On copositive Lyapunov functions for a class of monotone systems
نویسندگان
چکیده
This paper considers several explicit formulas for the construction of copositive Lyapunov functions for global asymptotic stability with respect to monotone systems evolving in either discrete or continuous time. Such monotone systems arise as comparison systems in the study of interconnected large-scale nominal systems. A copositive Lyapunov function for such a comparison system can then serve as prototype Lyapunov functions for the nominal system. We discuss several constructions from the literature in a unified framework and provide sufficiency criteria for the existence of such constructions.
منابع مشابه
On general stability for switched positive linear systems with bounded time-varying delays
This paper focuses on the problem of a common linear copositive Lyapunov function(CLCLF) existence for discrete-time switched positive linear systems(SPLSs) with bounded time-varying delays. In particular, applying system matrices, a special class of matrices are constructed in an appropriate manner. Our results reveal that the existence of a common copositive Lyapunov function can be related t...
متن کاملStability analysis of impulsive fuzzy differential equations with finite delayed state
In this paper we introduce some stability criteria for impulsive fuzzy system of differential equations with finite delay in states. Firstly, a new comparison principle for fuzzy differential system compared to crisp ordinary differential equation, based on a notion of upper quasi-monotone nondecreasing, in N dimentional state space is presented. Furthermore, in order to analyze the stability o...
متن کاملStability of a Special Class of Switched Positive Systems
This paper is concerned with the existence of a linear copositive Lyapunov function(LCLF) for a special class of switched positive linear systems(SPLSs) composed of continuousand discrete-time subsystems. Firstly, by using system matrices, we construct a special kind of matrices in appropriate manner. Secondly, our results reveal that the Hurwitz stability of these matrices is equivalent to the...
متن کاملA Contractive Approach to Separable Lyapunov Functions for Monotone Systems
Monotone systems preserve a partial ordering of states along system trajectories and are often amenable to separable Lyapunov functions that are either the sum or the maximum of a collection of functions of a scalar argument. In this paper, we consider constructing separable Lyapunov functions for monotone systems that are also contractive, that is, the distance between any pair of trajectories...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010